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Clinical Applications and Biosafety of Human Adult Mesenchymal Stem Cells
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Abstract: Mesenchymal Stem Cells (MSCs) are a population of adherent cells that can differentiate into mesenchymal lineage popula-
tions (cartilage, bone and fat tissue). In addition, they seem to be able to differentiate also into a broader type of lineages other than the
original mesodermal germ layer.

Bone marrow MSCs are a standard in the field of adult stem cell biology and clinical applications; however adipose-derived MSCs are
becoming an attractive alternative due to their minimally invasive accessibility and availability in the body.

MSCs modulate several effector immune functions by interacting both with innate and adoptive immune responses. Several local signals
from the tissue microenvironment, together with cytokine and soluble factors released by MSCs influence anti-inflammatory and tissue
repair properties of infused MSCs. Therefore, cellular therapies utilizing ex vivo expanded MSCs may be an interesting approach for in-
flammatory and autoimmune diseases.

Biosafety is still one of the most important aspects; therefore the production of clinical-grade MSCs requires the careful identification
and control of all the phases of cell manipulation and release.

Many clinical applications of adult MSCs are in progress and are using bone marrow or adipose tissue-derived MSCs for the treatment of
Graft Versus Host Disease (GVHD), inflammatory joint discases and osteocartilagineous defects, digestive tract, cardiovascular and neu-

rological diseases.

Keywords: Bone-marrow mesenchymal stem cell, adipose derived stem cell, biological characteristics, clinical applications, biosafety. cell

therapy, human, adult.

INTRODUCTION

More than forty years ago. Friedenstein [1] described a popula-
tion of mononuclear cells from the bone marrow with clonogenic
properties, with the ability to adhere to plastic substrates when cul-
tured ex vivo. to develop colony-forming unit fibroblasts (CFU-F)
and differentiate into chondrocytes, osteoblasts and adipocytes.

In the following years, different groups described subsets of
bone marrow stromal cells with characteristics resembling the
population originally described by Friedenstein and many terms
have been used to define these cells, such as mesenchymal stem
cells/marrow stromal cells (MSCs) [2. 3]. bone marrow stromal
stem cells (BMSSC) [4]. marrow-isolated adult multipotent induc-
ible cells (MIAMI) [5] and mesenchymal adult stem cells (MACs)
[6].

The current definition of these cells is either mesenchymal stem
cells (MSCs) [2] or stromal cells [7. 8], respectively, due to their
ability to differentiate into mesenchymal linecage populations and
their belonging to the stroma that is believed to have a physical
supporting role to the hematopoietic stem cells niche.

Despite years of intense investigation, the location and role of
native MSCs within their tissuc of origin in vivo are not known,
mainly because of the lack of specific markers allowing their dis-
tinct identification [9. 10]. MSCs are known to undergo phenotype
modulation during ex vivo cultures, acquiring expression of new
markers while also losing some old ones [11].

The definition of MSCs is based on the characterization of cell

populations expanded in vitro and no uniformly accepted specific
surface markers of MSCs have been identified; instead a mix of
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in vitro aspects, including a combination of phenotype characteris-
tics and functional properties have been utilized.

The Mesenchymal and Tissue Stem Cell Committec of the In-
terational Society for Cellular therapy (ISCT) selected three
minimal criteria for the identification of MSCs [12, 13]:

a. Adherence to plastic when cultured as isolated cells:

b. Positivity (= 95%) for CD73, CD90 and CD105 surface mole-
cules and negativity (= 95%) for CD14, CD34, CD45 and hu-
man leukocyte antigen-DR (HLA-DR) surface molecules:

c. Ability to differentiate within cartilage, bone and fat.

These criteria allow only a retrospective definition of a cell
population containing MSCs but do not allow direct purification of
native mesenchymal progenitors from tissues [reviewed by 14-19].

MESENCHYMAL STEM CELLS FROM BONE MARROW:
PHENOTYPE AND DIFFERENTIATION

Bone marrow stromal cells are a standard in the field of adult
stem cell biology and clinical applications. Most studies on pheno-
type and functional activity of bone marrow Mesenchymal Stem
Cells (BM- MSCs) have been performed on in vitro cultured cells.

In in vitro conditions, these cells are adherent to plastic, present
a defined set of surface molecules and can be specifically induced
to differentiate. within their own germ layer, into cartilage, bone
and fat tissue [13, 20].

1. Surface Marker Expression

Cultured BM-MSC phenotype is defined by the co-expression
or lack of different non-specific surface antigens. Besides those
required by ISCT criteria, also CD44 (hyaluronic acid receptor),
CD146 (melanoma-cell adhesion molecule, Mel-CAM) and CD200
(0X2) are strongly expressed on BM-MSCs. MSCs are also nega-
tive for CD11b (integrin M) and B cell markers (CD19 or CD79)
(Table 1) [16. 17, 19-26].

© 2012 Bentham Science Publishers
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Tablel. Cell-surface Markers Expressed by Human Bone Marrow Mesenchymal Stem Cells (BM-MSCs) and Adipose-derived
Stem Cells (ASCs)

Markers Antigen e A
Native Cultured FBS HS
CD9 Tetraspanin family n.d.
CDI10 CALLA (common acute lymphocytic leukemia antigen) n.d.
CDI11b ITGAM (integrin aM)
CD13 Aminopeptidase n.d.
[ CcD14 LPS receptor nd.
cDI19 B lymphocyte antigen n.d.
CD29 i1 Integrin n.d.
CD31 PECAM-1 (Platelet endothelial cell adhesion molecule-1) n.d. ’
CD34 Sialoprotein l ‘
CD44 Hyaluronic acid receptor n.d.
CD45 Pan-leukocyte antigen
CD49a Integrin al chain nd.
CD49b Integrin a2 chain n.d. n.d. n.d.
il CD49¢ Integrin a3 chain n.d. nd. n.d.
CD49d Integrin a4 chain n.d.
CD49¢ Integrin a5 chain n.d.
CDs51 Integrin aV chain nd.
CD73 Ecto-5-endonuclease, SH3, SH4
CD79 B lymphocyte antigen nd. n.d.
CD90 Thy-1
CDI105 Endoglin !
CDI106 VCAM-1 (vascular cell adhesion molecule-1)
CD117 c-Kit nd. Y
CDI33 AG133 (prominin)
CD140b PDGF-Rf (platelet-derived growth factor receptor-f3) n.d. n.d.
CDl146 Mel-CAM (melanoma-cell adhesion molecule)
CD166 ALCAM (activated lymphocyte cell adhesion molecule)
CD200 0X-2 n.d. n.d.
i CD271 NGFR (neural growth factor receptor) n.d.
MHC | Major Histocompatibility Complex Class | n.d.
MHC 11 Major Histocompatibility Complex Class 11 n.d.
Stro-1 Unknown antigen
Stro-4 Unknown antigen n.d. n.d.
GD2 Ganglioside n.d. n.d.
SSEA4 Stage-specific embryonic antigen n.d. nd.

The table shows the different cell preparations in columns and the surface antigens in rows. The white color codes for negative expression, medium grey codes for low expression and
black codes for positive expression

n.d.: not determined; FBS: fetal bovine serum; HS: human serum.

Based on MSC data from Bernardo et al. [17], Pittenger et al. [21], Delorme et al. [22], da Silva ¢t al. [23], Deschaseaux e al [25] and Pontikoglou ef al. [26]

Based on ASC data from Lindroos ¢f al. [72, 116], Mitchell et al. [82], Gimble e al. [86], Rada et al. [88], Daher ef al. [93), Schaffler ef al. [94), Katz et al. [95], Gronthos ef al
[97], Kem et al. [100], McIntosh er al [105], Zannettino et al. [113].
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Furthermore, intermediate levels of Major Histocompatibility
Complex Class | (MHC-I) antigens were present, whereas the ex-
pression of Major Histocompatibility Complex Class II (MHC-II)
could be evidenced only on Interferon-y (IFN-y) activated cells [27,
28].

Conversely, even if some antigens are shared with cultured
cells, the phenotype of native MSC precursors is less characterized
because of the low frequency of these cells in the bone marrow
samples and/or the absence of specific markers allowing their iden-
tification (Table 1) [2].

Nevertheless, different markers have been used in an attempt to
purify native MSCs from bone marrow [reviewed by 17, 26, 29]:
Stro-1 identified bone marrow stromal cells distinct from hema-
topoietic stem cells (HSCs) [30]: Stro-4 seemed specific for mesen-
chymal precursor cells, being able to enrich colony-forming fibro-
blasts when utilised for MSC isolation from bone marrow [31] and
CD140b (platelet derived growth factor receptor . PDGF-RB) has
been proposed as a marker for the isolation of clonogenic MSCs
[32.33].

Bone marrow MSCs purified on the basis of CD271 (low affin-
ity receptor of neural growth factor, LNGFR) displayed the ability
to differentiate into multiple mesenchymal lineages [34] and are
considered to be a subset with immunosuppressive properties, pro-
moting lymphoemopoietic engraftment in vivo [35]. The finding of
this glycoprotein, (mainly present on neural cells), on BM-MSCs is
consistent with a partial origin of MSCs from neuroectodermal
germ layer or, at least, with an initial influence of neuroepithelial
cells on MSC differentiation [36, 37].

In addition, also GD2 (ganglioside) [38], SSEA4 (stage specific
embrionic antigen) [39] and CD49a (integrin ol chain) [40],
CD105 (endoglin) [24], CD146 (Mel-CAM) [26] and CD200
(OX2) [22] have been proposed for sclecting native MSCs from
bone marrow.

Despite the identification of these other MSC markers, none has
been demonstrated to be individually able to identify the true mes-
enchymal progenitors.

Proteomic approaches and microarray analyses that allow the
comparison of expression profiles among MSCs obtained from
different tissues, cultured in different conditions and for different
periods [41] might better characterize peculiar differences. For
example. NOTCH3, JAG2 and ITGA11 transcripts have been ob-
served on MSCs expanded from bone marrow [42, 43].

Although native MSC identity is not clearly defined, various
studies have shown a similar phenotype and differentiation pattern,
in vitro. between MSCs and pericytes and also an origin of MSCs
from these cells [29, 44, 45].

The presence of ubiquitous reserves of multilineage progenitor
cells in the vascular niche of capillaries and blood vessels may ac-
count for the possibility of obtaining MSCs from different tissues
and organs [46]. Besides the bone marrow, cells with multilineage
differentiation potential have been isolated from adult (dental pulp
[47]. skeletal muscle [48]. synovial membrane [49], circulatory
system [50]. adipose tissue [51]) as well as fetal tissues (amniotic
fluid [52]. umbilical cord [53]. fetal blood, liver and lung [54, 55]).

2. Differentiation Potential

In the last twenty years, the differentiation potential of MSCs
has attracted the attention of researchers. Since the 1990s Pitttenger
and co workers [21] showed that MSCs could differentiate into
mesodermal lineages such as cartilage, bone and fat. In addition, it
has been reported that MSCs are able to differentiate into a broader
type of other lineages besides the original mesodermal germ layer
[56. 57], such as vascular smooth muscle [58, 59, myogenic cells
[60], hepatocytes [61], endothelial cells [62], neural cells [63] and
cardiomyocytes [64]. Although most of these observations were
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obtained from in vitro experiments, they provide evidence to recog-
nize the differentiation of MSCs in vivo. However, the definitive
proof of the differentiation of MSCs into tissue other than that of
mesodermal origin is still lacking.

Different local signals from the tissue microenvironment regu-
lated the differentiation of engrafted MSCs, in vivo. into tissue-
specific cells [19], which are required by damaged tissues [65, 66.
67]. into cells composing the niche for tissue repair [68] and cells
with regulatory functions, contributing to tissue repair and regen-
eration by means of trophic or immunomodulatory cytokine pro-
duction [69].

Although mesenchymal stem cells obtained from bone marrow
continue to be utilized for cell therapies, the painful harvesting,
together with the need for in vitro expansion of the low numbers of
stem cells present in this tissue, induced the search for alternative
tissue options.

Adipose tissue attracted researcher attention due to minimally
invasive accessibility and amount of depots in the body.

ADIPOSE-DERIVED STEM CELLS: PHENOTYPE AND
DIFFERENTIATION

Zuk and co-workers [51] were the first to describe the presence
of multilineage cells in human adipose tissue [reviewed by 70-73].

Adipose tissue originates from mesodermal germ layer and
histologically it belongs to connective tissues. In humans it is one
of the most shared tissues. being distributed as subcutancous and
visceral fat [74]. It is also present in the bone marrow as yellow
component and in breast tissue [reviewed by 75, 76].

Two types of functionally different fat are described in mam-
mals:

a) The white adipose tissue involved in body energy storage and
mobilization (in the form of cholesterol. triglycerides and lipid
soluble vitamins) (74, 76]:

b) The brown adipose tissue responsible for basal and induced
energy dissipation and thermogenesis, converting nutrient into
heat [76, 77].

In addition to storing energy, adipose tissue provides mechani-
cal protection, immune and endocrine function and tissue regenera-
tive potential. Adipose tissue surrounds vital organs and is located
beneath the skin, where it protects from infections and trauma. Bac-
terial and fungal infections of fat are uncommon and metastases are
unusual, probably related to the innate and adaptive immune cells
contained in the tissue. as well as to the potentially high local fatty
acid concentrations that are lethal to pathogens and non-adipose cell
types [75. 77, 78].

Fat tissue produces different factors (including interleukin 6,
IL-6 and angiotensin 1), secretes numerous adipokines (such as
leptin and resistin) and cytokines (like insulin growth factor -1,
IGF-1 and tumor necrosis factor-c, TNF-or) and activates hormones
(such as glucocorticoids and sex steroids) [75-77, 79].

Different cytokines and hormones are produced also by the
other cellular components of adipose tissues that, in proportion to
the cell types present, affect the overall amount and type of soluble
factors derived from the tissue [76].

The removal of fat tissues (by liposuction aspirates and for
reconstructive surgery) supplies a considerable amount of material
(about 100-3000 ml of fat from liposuction aspirates) containing
about 300,000 mesechymal stem cells/Iml volume). that are rou-
tinely wasted, could be used for rescarch in regenerative medicine
applications [51. 80, 81, 82].

In the adipose tissue, adipocytes are supported and surrounded
by the stromal vascular fraction (SVF), a heterogeneous set of cell
populations. The SVF. isolated by enzymatic collagenase digestion
of adipose tissue, contains the stromal cells, ASCs (adipose derived
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stem cells) [83], that have the ability of multilineage differentiation
into adipocytes, chondrocytes osteoblasts, myocytes, endothelial
cells, hematopoietic cells, hepatocytes and neuronal cells [70, 84-
91]. Furthermore, the stromal vascular fraction contains vascular
endothelial cells and their progenitors, vascular smooth muscle cells
and also cells with hematopoietic progenitor activity [92, 93]. The
SVF also contains leukocytes that may be localized in the adipose
parenchyma [93]. Despite the cellular heterogeneity of the crude
SVF, the culture of human adipose-derived cells favours the expan-
sion for a relatively homogeneous cell population expressing a
stromal membrane phenotype [reviewed by 71, 72, 86, 88, 93, 94].

A standardized nomenclature was proposed in 2004 during the
International Federation of Adipose Therapeutics and Science
(IFATS) meeting because a variety of names were used to identify
the plastic adherent cell population isolated from adipose tissue that
had undergone collagenase digestion. Researchers referred to these
cells as lipoblasts, pericytes, preadipocytes, processed lipoaspirate
(PLA) cells, adipose-derived stem/stromal cells (ASCs). adipose-
derived adult stem (ADAS) cells, adipose-derived adult stromal
cells, adipose-derived stromal cells (ADSCs), multipotent adipose-
derived stem cells (h(MADS) and adipose mesenchymal stem cells
(AdMSCs) [70, 85, 95].

According to IFATS’s recommendations, the term adipose-
derived stem/stromal cells (ASCs or ADSCs) should be used to
identify the isolated, plastic adherent. multipotent cell population
[93. 96]. ASCs fulfill the characteristics required for the application
of stem cells in regenerative medicine: marked amounts of adipose-
derived stem/stromal cells (ASCs) can be obtained from adipose
tissue in a more easy-to-handle way than other types of MSCs, with
less pain for the patient [94].

The main characteristics of ASCs as stem/stromal cells include
the ability to develop fibroblast-like clones and plastic adhesion,
their wide proliferative capacity and the expression of a panel of
membrane antigens [98]. The starting adherent cells grow into
spindle- or star-shaped cells after the second passage in culture and
assume a fibroblast-like appearance.

Table 2.
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They also have the ability to differentiate into many mesoder-
mal lineages, such as cartilage, bone, muscle and epithelium, as
well as neural progenitors [98]. Adipose-derived mesenchymal
stem cells share a lot of similarities, such as morphology. distribu-
tion of surface antigens, multipotency with other stem cells ob-
tained, for example, from bone marrow (Table 2) or umbilical cord
blood. [99-103].

Surface markers and differentiation potential specifically induc-
ible towards mesodermal lineages (cartilage, bone and fat) [22, 84,
98] are used to characterise ASCs, likewise adopted for human
MSCs isolated from bone marrow and other mesenchymal tissues.

1. Surface Marker Expression

Whereas specific antigens identify embryonic stem cells [104],
similarly to BM-MSCs, ASCs lack unique markers. Thercfore a
panel of surface molecules [99, 105-108], mostly shared with MSCs
from bone marrow, must be used to identify these cells. ASCs ful-
fill the minimal phenotype standard criteria (as defined by ISCT)
[12, 13]: they express CD73, CD90 and CD105 and lack CDI14,
CD34 and CD45 antigens.

In addition, CD13, CD29, CD166 and MHC I are uniformly
described to be strongly expressed; a moderate expression has been
observed for CD9, and CD133 has been described to be poorly or
not expressed on ASCs. Moreover, CD11b, CD19 or CD79, CD31
and MHC-I1 are also absent on ASCs [72. 82. 86. 88, 93-95. 97,
100, 105] (Table 1).

However, some differences are described for CD106, cognate
receptor of CD49d which are two molecules associated with hema-
topoietic stem-cell and progenitor-cell homing/mobilization within
the bone marrow [82, 99]. ASCs appear positive for CD49d and
almost negative for CD106, whereas on BM-MSCs these molecules
are reciprocally expressed on MSCs [106].

In recent studies, CD105 has been shown to be a relatively spe-
cific marker for identifying mesenchymal stem cells: adipose-
derived stem cells enriched in CD105 positive cells display a potent
chondrogenic potential in vitro. strong collagen Il staining and

Characteristics of Bone Marrow Mesenchymal Stem Cells (BM-MSCs) and Adipose-derived Stem Cells (ASCs)

Characteristics BM-MSCs

ASCs

Embryological origin

Mesoderm, neural crest

Mesoderm, neural crest

Tissue Bone marrow

White adipose tissue

Cell purification process

Without proteolytic digestion

With proteolytic digestion

Selection Plastic adherence Plastic adherence
Antigenic markers CD49a positive CD49a positive
CD73 positive CD73 positive
CDY0 positive CDY0 positive
CD105 positive CDI105 positive
CD271 positive CD271 positive
(CD34 negative (D34 positive (early passages)
CFU-F 0.005 0.05

Expansion in vifro

20-50 population doublings

44-80 population doublings

Differentiation potential

Mesenchymal lineages (cartilage, bone, adipose tissue)

Mesenchymal lincages (cartilage, bone. adipose tis-
sue)

Based on data from Dominici ef al. [13], Pittenger et al. [21], Delorme et al. [22], Lindroos e/ al. [72], Mitchell e al. [82], Zuk et al. [84], Gronthos e al. [96], De Ugarte et al. [98],
Kern et al. [99], Romanov ef al. [100], Wagner ¢t al. [102], McIntosh et al |105], Bourin e al. [208].
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higher gene expression of collagen II and aggrecan [109], thus pro-
viding an important implication for cartilage regeneration and re-
construction.

Other proposed putative markers for homogeneous stem cell
populations are: CD271 [110] and CD146 (moderately expressed
on ASCs), which identifies a population of subendothelial cells
exhibiting osteogenic, adipogenic and chondrogenic potential and
capable of supporting a hemopoietic environment [111]. In addi-
tion, the protein Pref-1, first identified on murine 3T3-L1 preadipo-
cytes, was proposed by some authors as a putative ASC marker
[112]. whereas others have reported the utility of pericytic markers
such CD140b and 3G5 [45. 113].

However, the expression of some markers is controversial, be-
cause they are described as either positive or negative. For example,
Stro-1 (a marker suggested for identifying mesenchymal stem cell
populations [30] and proposed for selecting native MSCs from bone
marrow [26]) is reported as being either present [85] or absent [97]
in ASC cultures.

Similarly, CD34 and CD106 are reported as being present on
ASCs [97], absent or expressed on a small population of cells [85.
95].

The expressions of some surface markers changes during cul-
ture progression.

Indeed, markers expressed by ASCs or by stromal vascular
fraction cells in vitro might be occasionally determined/modified by
the progressive passages in culture, thus favouring different profiles
of antigen expression between in vivo unmanipulated and in vitro
expanded cells [82, 105].

For instance, the expression level of CD29, CD44, CD73.
CDY0 and CD166 increased from the SVF to the very first passages
and subsequently stabilized at a high expression level [82. 106 and
Mariani, personal unpublished observations].

The opposite was observed for cell markers such as CDII.
CD14, CD34 and CD45 that, expressed on SVF cells, decreased or
were lost with consecutive passages, thus suggesting that the adher-
ence 1o flasks and the subsequent expansions selected a relatively
homogencous cell population [82, 105, 108, 114 and Mariani, per-
sonal unpublished observations].

Most of the results were obtained on ASCs grown in medium
supplemented with fetal bovine serum (FBS), but the results for
ASCs cultured in medium in the presence of human serum deriva-
tives (Table 1) or in serum-free conditions show a maintained
phenotype [72, 115-117] with slight variations particularly in CD14
and CD49 markers.

Some contradictions in the reported ASC results are not unique;
in fact, similar differences have been observed for BM-MSCs [96]
and may in part be explained by technical reasons (such as sensitiv-
ity and sources of antibodies, detection methods) and by the prolif-
crative stage of the cells in culture or donor variability.

Proteomic characterizations, by microarray analysis and Real-
Time Polymerase Chain Reaction (RT-PCR), showed that adipose
or bone marrow-derived stem cells, share a similar transcriptional
profile for stem-related genes [118. 119], thus strengthening the
idea that adipose tissue might be a suitable source of MSCs as well
as bone marrow. In addition, since the amount of MSCs in the bone
marrow is quite low and decreases with age [120]. adipose tissue
may become a remarkable source of multipotential cells for re-
placement therapy.

Genomic studies have provided more detailed information,
since the differentiation of stem cells is expected to induce signifi-
cant changes in the gene expression of multipotent populations.
ASCs expressed the mesenchymal cell specific markers and mo-
lecular markers typical of the embryonic stem cell phenotype:
OCT4, Nanog, and Sox2 [121]. The expression of most of them
was low in hematopoietic mesenchymal cells [122]. therefore the
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evaluations of the expression of these genes was used to determine
the degree of cell differentiation. Further studies on the role of the
regulatory factors in the differentiation of ASCs cultured in vitro
and in vivo are expected to explain the molecular mechanisms and
highlight some of the transcription pathways involved in the line-
age-specific differentiation of these stem cells.

2. Differentiation Potential

Stem cells isolated from white and brown adipose tissue differ
in number and differentiation potential. In general. adult stem cells
isolated from white adipose tissue are more numerous, grow more
rapidly and have a higher differentiation potential. than cells iso-
lated from brown tissue [123].

Differences in the ASC population are also described as con-
cerning the isolation from the same type of adipose tissue but in
different anatomical regions [124]. However, ASCs are an effica-
cious source of multipotent cells that have the ability to differenti-
ate into several different cell types under appropriate culture condi-
tions and in the presence of specific inducing factors [71-73].

In addition, ASCs produce various cytokines and growth factors
that support angiogenesis, tissue remodeling and antiapoptotic
events, (such as vascular endothelial growth factor, VEGF: hepato-
cyte growth factor, HGF: interleukin 6. IL-6: IL-7: tumor necrosis
factor. TNFa: macrophage colony-stimulating factor, M-CSF and
transforming growth factor, TGF-B1), potentially influencing cell
differentiation and modulating the surrounding cells [125, 126].

Several in vitro studies have shown that ASCs differentiate into
chondrocytes when cultured in a medium supplemented with insu-
lin growth factor (IGF), bone morphogenetic proteins (BMPs) and
transforming growth factor-§ (TGF-B) [127, 128]. The chondro-
genic differentiation of ASCs was confirmed by their ability to
produce cartilage in vitro and in vivo, in a variety of experimental
models [106, 129, 130]

Under osteogenic culture conditions in medium containing
dexamethasone, B-glycerophosphate and vitamin D3, ASCs ex-
pressed genes and proteins associated with the osteoblastic pheno-
type. [131-133]. ASCs under ostecogenic stimulation adhered to
scaffolds, migrated, proliferated and differentiated in order to re-
generate damaged bone tissue in vivo [106, 134-137].

Obviously, ASCs have an exceptional potential to differentiate
into mature adipocytes in vifro [106. 131, 132, 138], under the in-
fluence of insulin, isobutylmethylxanthine, dexamethasone, rosigli-
tazone and indomethacin. This type of differentiation is very prom-
ising for developing improved techniques to repair soft tissue de-
fects, particularly after oncological surgery [139].

In addition to their ability to differentiate into classical lincages,
ASCs differentiate in the presence of dexamethasone and hydrocor-
tisone and display a myogenic phenotype in vitro [140] and retain
their differentiation potential towards the cardiomyogenic lineage
[64, 106, 141]. Furthermore. ASCs can differentiate into endothelial
cells and, by produced pro-angiogenic factors, contribute to vessel
formation [ 142-145].

Studies using human adipose stromal-vascular cell fractions for
developing an osteogenic and vasculogenic construct in a one step
procedure are interesting [146, 147]. Human ASCs, under perfusion
flow, in a three-dimensional background were able, when implanted
in nude mice. to form bone tissue and blood vessels functionally
connected to the mouse vascular network and containing mouse
erythrocytes.

It was also suggested that ASCs might have the ability to dif-
ferentiate into putative neurogenic cells [106, 148, 149], exhibiting
a neuronal-like morphology and expressing several proteins consis-
tent with the neuronal lineage and acquire a pancreatic endocrine
phenotype (induction of the insulin, glucagon and somatostatin
genes) ex vivo in response to defined culture conditions [150, 151].
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A few studies have reported an epithelial differentiation and, by
using these results. a tissue-engineered airway construct. as a proto-
type vocal fold replacement. was produced with a three-
dimensional structure of fibrin and ASCs [140, 152].

The differentiation of ASCs into hepatocyte-like cells has also
been investigated [61, 153]. Human ASCs were transplanted into
the livers of immunodeficient mice with or without prior hepatocyte
differentiation in vitro, and it was observed that the predifferentia-
tion of ASCs in vitro promotes liver integration in vivo [154].

Human ASCs were also found to restore damaged intervertebral
disc segments in rats, when transplanted into degenerated disc
[155].

INTERACTIONS BETWEEN MSCS AND IMMUNE RE-
SPONSE

Mesenchymal stem cells modulate several effector immune
functions by interacting both with innate and adaptive immune
responses either by cell-to-cell contact or soluble factors [reviewed
by 16, 26, 156-162].

1. MSCs and Innate Immunity

Natural Killer (NK) cells are important effector cells of the
innate immunity, playing a key role in antiviral and anti tumor re-
sponses [163]. They display spontaneous lytic activity, against cells
not expressing MHC class | molecules. that is strictly regulated by a
balance of signals transmitted by activating and inhibitory receptors
interacting with MHC molecules on target cells [164].

Proliferation of NK cells induced by IL-2 or IL-15 cytokines
and the production of IFN-y were highly susceptible to MSC-
mediated inhibition [165] (Table 3).

MSCs downregulated NKp30 and NKG2D-activating NK re-
ceptors, thus abrogating also spontaneous lytic activity [166-168].
Conversely, NK cells activated in vitro by cytokines were able to
kill both allogenic and autologous MSCs [169].

The susceptibility was dependent on the low surface level of
MHC-I molecules and on the expression of ligands for activating
NK receptors [166]. Upregulation of MHC-1 molecules on MSCs
by incubation with IFN-y partially protected MSC from lysis [170].

Neutrophils are also important mediators of innate immunity
responsible for microorganism killing during bacterial infections.
After binding to bacterial products neutrophils undergo respiratory
burst; MSCs have been shown to impair this metabolic activity
significantly and to inhibit apoptosis of both resting and activated
neutrophils [171]. This anti-apoptotic effect of MSCs seemed to be
mediated by 1L.-6 [171]. Delayed apoptosis was thought to preserve
the pool of neutrophils that will be rapidly recruited in response to
infections (Table 3) [172].

In human macrophages, MSCs inhibited the production of
TNFa and IL-12, but increased the production of IL-6 and IL-10
(Table 3) [173].

Myeloid dendritic cells (DCs) are the most potent antigen-
presenting cells, essential in the activation of the immune response
and in the induction of tolerance. During maturation DCs progres-
sively upregulated MHC class | and class 11 antigens and expressed
co-stimulatory and other surface molecules (CD11c, CD80, CD83
and CD86) [ 174].

In vitro, MSCs inhibited the maturation of human blood mono-
cytes and CD34+ hematopoietic progenitor cells into DCs [175].
MSCs incubated with mature DCs decreased the expression of
MHC-IT and other molecules involved in antigen presentation, thus
suppressing the ability of DC to stimulate T cell proliferation [157].
In addition, MSCs decreased the production of IL-12 and TNFw,
but, when incubated with plasmocytoid DCs (which are specialized
for the production of type I IFN in response to microbial stimuli)
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upregulated [L10 production, thus increasing anti inflammatory
response [169] (Table 3).

2. MSCs and Adaptive Immunity

MSCs have been found to inhibit T lymphocyte proliferation
and activation in response to alloantigens, polyclonal mitogens,
CD3 and CD28 antibodies in vitro [176, 177|.

Immunosupression concerned all CD3, CD4 and CD8 T sub-
populations, and might be mediated by both allogeneic and autolo-
gous MSCs, thus indicating that it was not restricted by Major His-
tocompatibility Complex [178, 179] (Table 3).

The reduced proliferation was dependent on an MSC-mediated
arrest of cell division in the GO-G1 phase of the cell cycle, which
was further associated with inhibition of cyclin D2 expression (the
first cell cycle protein induced following stimulation) [180].

MSCs did not induce T-cell apoptosis, instead they promoted
the survival of resting T cells, and the rescue of T cells from activa-
tion-induced cell death by down-regulating the CD95-CD95 ligand
on their surface [181]. Moreover, MSCs decreased IFN-y produc-
tion by T helper (Th)-1 cells, whereas they increased interleukin
(IL)-4 by Th-2 cells, thereby promoting a shift from a proinflamma-
tory to an anti-inflammatory response [169]. MSCs decreased other
functions of T-cells, such as the production of IL.-2 and TNFa [169]
(Table 3).

MSCs have also been reported to down-modulate MHC re-
stricted lysis of virus-infected or allogenic cells, which is mainly
mediated by CD8 cytotoxic T lymphocytes (CTL) [182] and to
increase, in mixed lymphocyte reactions, the proportion of
CD4+CD25+ FoxP3+ regulatory T cells (T regs), which show po-
tent immune suppressor activity [ 183, 184].

Finally, MSCs have been reported to promote, both in vitro and
in vivo, the generation of CD8 T regs [185].

Indeed, MSCs can suppress antigen-specific T cell proliferation
and cytotoxicity as well as induce anti-inflammatory or T regula-
tory cells. Soluble HLA-G, has been shown to be directly involved
in the MSC-mediated induction of Tregs | 186].

Studies analysing the interaction between MSCs and B lympho-
cytes have shown contrasting results (Table 3).

B-lymphocyte proliferation activated by anti-immunoglobulin
antibodies, cytokines or soluble CD40 ligand [37], as well as B cell
maturation and immunoglobilin production, could be inhibited in
vitro by MSCs, through the release of humoral factors [187. 188].

Nevertheless, activated B cells become susceptible to the sup-
pressive activity of MSCs in the presence of exogenously added
IFN-y [158].

MSCs also modulated the expression of some chemokine recep-
tors (CXCR4, CXCRS5, CCR7) on B cells, thus influencing chemo-
tactic responses of these cells to the paired ligand molecules
(CXCL12 and CXCL13) [188].

However, other studies applying different experimental ap-
proaches obtained opposite results, thus showing that MSCs could
foster survival, proliferation and differentiation of transitional and
naive B lymphocytes to antibody-secreting cells and strongly en-
hanced proliferation and differentiation of memory B-cell popula-
tions into plasma cells [ 189, 190].

3. Mechanisms of Inmunomodulation

Relatively little is known about the underlying mechanisms
responsible for the immune-modulatory activities of MSCs.

The initial phases of the interaction between MSCs and immune
cells involve direct cell-to-cell contact by surface adhesion mole-
cules, whereas the following crosstalk is mainly mediated by the
numerous soluble factors constitutively or subsequently produced
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Table3. Effect of MSCs on the Cells of Innate and Adaptive Inmunity
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Natural Killer (N

K) cells

1 proliferation induced by [1.-2

1 proliferation induced by IL-15

1 IFN-y production

1 spontancous lytic activity

Neutrophils

lapoptosis of resting and activated cells

1 respiratory burst

Macrophages

1 IL-12 production

1 TNF-o. production

T IL-6 production

1 IL-10 production

Dendritic cells (D

C)

1 MHC-II on mature cells

1 CD11¢, CD83, co-stimulatory molecules

1 1L-12 production

1 TNF-a production

T IL-10 production from plasmocytoid DC

T lymphocytes

Inhibition of proliferative response to

polyclonal mitogens

allogenic cells

specific antigens

Not MHC-restricted inhibition

T CD4+ CD25+ FoxP3+ regulatory T lymphocytes (Treg)

T CD8+ Treg

1 T-cell (CTL) mediated citotoxicity

1 CDY5 and CDY5 Ligand on T lymphocyte surface

1 IL.-2 production

1 IFN-y production by Th1 lymphocytes

1 114 production by Th2 lymphocytes

B lymphocytes

Inhibition / activation of proliferative response to

anti-immunoglobulin antibodies

soluble CD40 Ligand

cytokines

Inhibition/enhancement of maturation

Inhibition/ enhancement of immunoglobulin production

Modulation of chemokine receplors

Based on data from Salem e al. [16], Pontikoglou ef al [26], Meireilles et al. [156], Uccelli et al. [157), Ghannam ef al. [158], Sensebé et al. [159], Shi et al. [160], Yagi etal. [161],

Singer et al. [162].
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by MSCs, after the interactions with target cells [156-158, 160-
162).

Nitric oxide (NO) and indoleamine 2.3-dioxygenase (IDO)
were released by MSCs after triggering by IFN-y produced by tar-
get cells.

IDO induced the depletion of tryptophan (an essential amino
acid for lymphocyte proliferation) from the local environment and
was required to inhibit the proliferation of Th1 cells producing IFN-
v and. together with prostaglandin E2 (PGE 2), also NK activity
[191].

Furthermore, IFN-y, alone or in combination with other pro-
inflammatory cytokines (TNF, IL-1o: or IL-1B), stimulated the pro-
duction of chemokines attracting T cells, together with the synthesis
of inducible nitric-oxide synthase (iNOS) inhibiting T-cell activa-
tion, through the production of nitric oxide [192, 193].

MSCs produced constitutively other soluble factors, such as
transforming growth factor-B1 (TGF-f1). hepatocyte growth factor
(HGF), IL-10, prostaglandin E2 (PGE2), hacmoxygenase, IL.-6,
soluble HLA-G [156, 162].

MSC-produced 11.-6 was shown to downregulate the respiratory
burst, to delay the apoptosis of human neutrophils and modulate the
maturation of DCs [171. 194].

Soluble HLA-G has been shown to suppress T-cell prolifera-
tion. as well as NK-cell and T-cell lytic activity and to promote the
development of regulatory T cells [186, 195].

The contact between MSCs and activated T cells induced IL-10
production, which, in turn, has an essential role in stimulating the
release of soluble HLA-G by MSCs [186, 195].

However, the production of some of these molecules can be
increased by cytokines released by target cells through their interac-
tion with MSCs, for example, the constitutive production of PGE2
was up-regulated by TNF and IFN-y [169].

Some findings highlighted the duality of the interactions with
the immune response, thus supporting the transition from immuno-
suppressive to immunostimulatory activities for MSCs. For exam-
ple. low numbers of MSCs can render dendritic cells prone to pro-
moting T cell activation, whereas high numbers are required to
cause the opposite effect [196].

MSCs have been reported to express major histocompatibility
complex (MHC) molecules, thus including MHC class 11 (MHC-IT),
and the levels of these molecules were altered by proinflammatory
cytokines [27, 197].

Previous studies have shown that low levels of IFN- y induced
MSCs to express MHC-II as antigen presenting cells (APC): con-
versely high levels of IFN- vy downregulated the expression of
MHC-II [27. 198].

In this context, IFN-y-stimulated-MSCs can uptake, process and
present exogenous antigens, to CD4+ T cells, via their upregulated
MHC-11 molecules, [197, 199].

The roles of MSCs as both immunostimulatory and immuno-
suppressor cells and the balance between the two opposite actions
should be considered for the clinical applications of MSCs.

EX VIVO MANIPULATION OF MSCS FOR CELL-BASED
THERAPIES: CONCERNS AND POTENTIAL RISKS

1. Regulatory Rules

Current regulations concerning stem cell therapies mirror the
criteria adopted for biopharmaceutical industries.

American Food and Drug Administration and the European
Medicine Agency (EMEA) and related local regulatory authorities
divide procedures into “minimal” and “more than minimal™ ma-
nipulation based on the degree of manipulation performed to isolate
MSC population and the related risk of adverse events [200-204].
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Good laboratory practices (GLP), which are adopted by the
majority of clinical laboratories, are sufficient for minimal manipu-
lations such as cell cryopreservation procedures, whereas for more
than minimal manipulations the required Good Manufacturing Prac-
tices (GMP), assure a more stringent degree of control of the labo-
ratory procedures.

In fact, the more-than-minimal manipulations include complex
activities, such as cell expansion in vitro, activation, combination
with scaffolds, use of the cells for other than the tissues normal
function. unrelated allogenic transplantation [200, 205].

However, if these rules are well adaptable to the biopharmaceu-
tical processes aimed at extensive production, they are less adapt-
able to clinical laboratories, which often prepare custom-processed
cells for individual patients.

The European Regulation defines the use of mesenchymal stem
cells (either derived from bone marrow or from adipose tissue) as
advanced therapy medicinal products [201, 206].

MSCs are considered products for tissue-engineering or so-
matic-cell therapy. depending on the origin, preparation process and
proposed clinical uses.

The production of clinical-grade MSCs in agreement with GMP
procedures requires the careful identification and control of all the
phases of production.

The methods of expansion must be monitored to assure and
maintain the functionality of the cells (viability, morphology, phe-
notype. proliferative rate and differentiation capacities) as well as
genomic stability (karyotype and telomerase expression) in the time
course of the culture. In addition, bacteriological tests must be per-
formed to assure the sterility of the cell product [reviewed by 159,
207-211].

2. Culture Conditions: Media, Serum and Serum Substitutes

Culture medium has an important influence on growing and
differentiation capacities of MSCs and ASCs during passages in
culture. MSCs and/or ASCs are seeded and expanded in classical
media (such as MEM, D-MEM, RPMI-1640 and D-MEM/F-12)
(82, 84.97. 159, 208].

To supply vital nutrients, attachment and proliferative factors
for expanding cells, culture medium is usually supplemented with
fetal bovine serum (FBS) or human serum (HS). or plasma and
growth factors [212].

Nevertheless, serum concentrations and species of origin influ-
ence the proliferation of ASCs [213]. For instance, FBS is a classi-
cal supplement for cell cultures, it supplies all the factors necessary
for optimal cell proliferation in vitro, [213], but for the following
clinical applications of cultured cells, the presence of FBS can be
dangerous for the patient. Animal-derived bio-molecules, (foreign
to the human species), present in the culture medium can be trans-
ferred with human cells into the recipient subjects and trigger se-
vere immunological responses in vivo, such as anaphylactic reac-
tions that might explain some of the failures in the therapeutic use
of mesenchymal stem cell [214-216].

Other possible risks include the transfer of bacterial or viral
infections, prions, and perhaps not yet identified zoonoses [211,
215]. The European regulatory agencies pay particular attention to
the use of FBS as a possible source of diffusion of bovine spongi-
form encephalopaty (BSE) and for the use of FBS in GMP produc-
tion. a certificate should be obtained to control the risk of transmis-
sion of infectious discases [208].

In addition, the significant variability of animal serum among
the different lots, might influence the reproducibility of the results;
moreover, serum composition is largely uncharacterized, containing
variable concentrations of cytokines and growth factors [108, 115,
213.216].



Clinical Applications and Biosafety of Human Adult

Autologous human serum seems a more suitable option for
clinical applications, since it avoids the introduction of allogeneic
or xenogeneic molecules into the recipient. However, conflicting
results on proliferation rate and differentiation potential have been
reported [217].

Higher proliferative rates of BM-MSCs using autologous hu-
man serum and results comparable with FCS have been observed,
[218-220]. The replacement of animal serum with human autologus
or AB serum appeared to be effective as bovine serum if supple-
mented with fibroblast growth factor- 2 (FGF-2) [221].

Likewise. results are conflicting concerning differentiation us-
ing autologous serum compared to FBS, described as improved
towards osteogenic and adipogenic lineages [222] or similar for
osteogenic differentiation [220].

A further alternative to the use of animal serum is platelet-rich
plasma and human platelet lysate. Platelets, respectively activated
by thrombin or by a cycle of freezing/thawing, can release cytoki-
nes (such as platelet-derived growth factor -PDGF, endothelial
growth factor - EGF and vascular endothelial growth factor -
VEGF), which induce a great proliferation of mesenchymal stem
cells [208, 223, 224].

After this treatment, MSCs retained their immune-modulatory
potential and showed a more efficient suppression of allo-antigen-
induced lymphocyte proliferation. No apparent genetic abnormali-
ties and no tumorigenic potential when implanted into nude mice
were detectable [225].

These substitutes were able to reduce the doubling time of both
MSCs and ASCs in vitro and maintain the morphology and function
of the cells [208].

Another alternative to bovine serum is patient serum collected
in concomitance with the tissue sample [211]. However, it appears
to be less favorable, since serum derived from aged individuals
might interfere with MSC proliferation and/or differentiation capac-
ity [225].

The careful definition of medium is important to maintain ho-
mogeneity between processes of cell production. Formulations
containing nutrients to reduce serum concentrations (reduced serum
media) [115] and completely serum-free media supplemented with
proteins [218, 226], are now available for the expansion of BM-
MSCs and ASCs.

The development of defined medium compositions completely
serum free for the expansion of adult stem cells, able to support the
proliferation and maintain the multi-potential capacity of the cells,
is in its infancy. but results are encouraging [115, 116, 227].

However, these media lack molecules favoring MSC attach-
ment, therefore plastic surfaces of culture devices must be previ-
ously coated with proteins favoring cell adhesion; they do not con-
tain growth factors, which must be added to the medium, which has
the disadvantage that they have not been produced with GMP and
usually their formulation is not disclosed, which prevents its use in
clinical trials [208].

In addition, the medium solution must also support the expan-
sion of the cells multifold in a minimum number of passages, since
long-term in vitro culture may alter the biology of ASCs [228. 229].

3. Donor Characteristics

An age-related decrease in the number or functional abilities of
stem cells is described not only in vivo, but also in vitro in relation-
ship to culture passages. These findings are relevant for regenera-
tive medicine protocols, where cells from elderly donors need to be
used for therapy [75. 120].

The age, anatomical region of collection and sex of the tissue
donor can influence the quality and functionality of the adipose-
derived stem cells, probably because of the different fat distribution
between men and women and different blood supplies, cytokine
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signaling and gene expression profiles of adipose tissue among
different depots [211, 230].

In mice it was observed that adipocyte progenitor cells accumu-
lated with age, more in visceral fat than in subcutancous fat, mostly
in females [231].

Ageing may alter the availability of progenitor cells derived
from adipose tissue also in humans and ASCs obtained from older
donors appears to have a slower rate of proliferation [232- 234].

Not only age. but also the anatomical region influenced the
proliferative potential: stromal cells obtained from subcutancous
adipose tissue displayed faster proliferation rates than those ob-
served in the cells from the omental region [235].

In addition. an altered angiogenic potential [234] and a modi-
fied potential of differentiation towards osteogenic lincage have
been reported [232, 233] even if changes in the number of precur-
sors with osteogenic capacity were not shown. Conversely, adipo-
genic potential was not related to donor age [233].

It was also found that the differentiation potential varied among
fat depots and differences have also been reported between gender
[232]. Males presented a more efficient overall differentiation po-
tential than females but dependent on depots, whereas females
maintained a degree of osteogenic differentiation of ASCs that was
not influenced by abdominal harvesting site, thus suggesting a hier-
archy of osteogenic differentiation potential based on gender and
anatomic harvest site [236].

Belonging to a defined anatomical depot also influenced sus-
ceptibility to apoptosis, with superficial abdomen depot being more
resistant than the other compartments [232].

Similar and sometimes controversial data have been reported
for BM-MSCs [reviewed by 237].

In general, age-related changes have been reported for the size
of the MSC pool, but the results were dependent on mouse strain
[238], collection methods, source and site of harvest of bone mar-
row samples in humans [120, 239-244].

An age related loss of the proliferative capacity of MSC to-
gether with telomere shortening, as well as the appearance of a
senescent morphology were observed [242, 245]. The osteogenic,
chondrogenic and adipogenic differentiation capacitics of MSCs in
donors of various ages did not change in culture in early passages.
whereas in late passages tripotent clones lost their adipogenic po-
tential [243, 246, 247].

4. Transforming Risk

The spontaneous transformation of human primary cells during
in vitro expansion, even if is seldom described, remains a major
safety problem [208, 210, 225].

Spontaneous transformation was mainly observed in murine
models: murine MSCs, expanded in vitro for long periods, under-
went chromosomal aberrations and assumed distinctive tumoral
features [248] and when implanted or injected into immune-
compromised mice, induced the formation of sarcomas [249, 250].
However. it was also observed that murine MSCs were prone to
acquire chromosomal abnormalities even after few in vitro passages
and when systemically injected, they embolized within lung capil-
laries and rapidly expanded and destroyed lung parenchyma by
forming osteosarcoma-like nodules [250].

The development of these tumors was specific for mice MSCs:
in fact similar experiments performed with human MSCs obtained
from fetal blood, showed that, human cells did not develop chromo-
somal abnormalities after different passages in vitro and the cells
were cleared from the lungs, even if the starting engrafiment was
similar [250].

Human MSC behavior appeared to be greatly different from
that of mice. When cultured for long periods, MSCs obtained from
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human bone marrow, neither underwent transformation [248, 249],
nor presented chromosomal alterations [251].

Bernardo and co-workers [251] performed extensive genetic
characterizations of human MSC from bone marrow after long term
in vitro passages or in the senescence phase. No chromosomal ab-
normalities, telomerase activity or expression of human telomerase
reverse transcriptase (WTERT) transcript were observed and in vivo
transplantation of long-term cultured human MSCs to nude mice
did not result in tumor formation [251. 252].

Similarly, Meza-Zepeda and co-workers [253 | described the
genetic stability of cells cultured to reach senescence and Choume-
rianou and co-workers [254]| showed that MSCs obtained from
pediatric bone marrow maintained a stable chromosome content
and anchorage-dependent growth and did not express detectable
levels of hTERT. In addition, these samples did not induce tumor
formation when injected into SCID mice [254].

However, this issue is still a concern because of the first reports
describing spontaneous transformation. In these reports modifica-
tions in human MSC subpopulations [255] and immortalized MSCs
(transduced by human telomerase reverse transcriptase), were
shown after very long-term in vitro culture [256, 257].

Rubio and co-workers [258, 259] described the spontancous
transformation of ASCs associated with a mesenchymal-epithelial
transition and similarly Rosland and co-workers [260] showed that
about 46% of bone marrow-derived MSCs underwent malignant
transformation after a period ranging between 5 and 106 weeks of
culture.

However, these last studies [258. 260] were subsequently re-
tracted because the data referred to as transformation were actually
determined by a cross contamination of culture with an epithelial
cancer cell line [261, 262].

In addition, the same research group [263] was afterwards un-
able to obtain new human MSC transformation events in numerous
new samples of adipose tissue both of pediatric and adult origin and
in various independent sets of cultures.

It has been described that MSCs display a variable level of ge-
nome instability with aneuploidy aspects in some ex vivo cultures
[208, 263], the ancuploidy was transient and donor dependent but it
was not influenced by the culture protocol.

However, these cells underwent progressive growth arrest and
normally evolved to senescence without acquiring selective growth
advantages or transforming potential in culture, and when injected
into immune-compromised mice did not develop tumours [264].
However, deletion/mutation analysis revealed that a few strains of
MSCs reached senescence without expressing pl6’””'“ (a regulator
of the cell cycle, known to contribute to cellular senescence and
also stem cell aging) [210, 265].

A recent study investigating the toxicity and the tumorigenicity
of human culture-expanded ASCs, found that they maintained mor-
phology, phenotype and differentiation capacity of MSCs and were
genetically stable until at least the twelfth passage in culture [266].
No toxicity or tumorigenicity was observed when these cells were
injected in immune-compromised mice; and when they were used
for the treatment of patients with spinal cord injury, no serious ad-
verse events were recorded [266].

Our group also evaluated the potential susceptibility of in vitro-
expanded ASCs to genetic alterations at different in vitro culture
time points. In particular, we analysed the accumulation of DNA
damage in vitro by microsatellite instability (MSI) analysis and the
replicative potential by telomere length and telomerase activity. No
cases of microsatellite instability were observed and allele patterns
were maintained throughout the culture period for all the analyzed
donors, thus indicating that repeated duplications in vitro did not
alter genetic stability of short repeated sequences. ASCs showed a
low degree of random fluctuation in the telomere dynamics, during
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in vitro culture and telomerase activity was undetectable in the
majority of the samples [unpublished observations].

Overall, these data support the bio-safety of MSCs but, the
paramount importance of this aspect, also prompted a thorough
investigation of these cells, considering also the main molecules
involved in senescence and transformation pathways (pl16. p21.
p33, hTERT and ¢-myc).

5. In vivo Interactions Between MSC and Tumors

MSCs can home to the stroma of developing tumors or to me-
tastatic sites when injected either systemically or intra-peritoneally
in animal models for different tumors [reviewed by 267-269].
Therefore, another important matter of debate is whether the ad-
ministration of MSCs, is able to promote the growth of hidden tu-
mors.

Despite various studies in recent years, contradictory results
have been obtained showing that MSCs promote either tumor pro-
gression or inhibition (Table 4).

In general, studies in favour of the tumor progression indicated
that when MSCs were co-injected with cancer cells in immuno-
compromised mice, they increased angiogenesis, accelerated tumor
growth and increased the number of metastases and tissue necrosis.

The contemporaneous, subcutaneous injection of MSC and
colon cancer cells fostered tumor growth by increasing the rates of
angiogenesis and tissue necrosis [270]. Both adult and fetal MSCs
were injected, showing a similar growth-promoting effect but fetal
MSCs fostered less tumor incidence than did adult MSCs (Table 4).

In addition, MSCs were able to increase the mobility and me-
tastatic growth of otherwise weakly metastatic human breast carci-
noma cells [271] and the dimension of colon cancer tumors by de-
creasing apoptosis [272]. Tumor cells were shown to stimulate the
secretion of CCLS5 chemokine from mesenchymal stem cells, which
acts in a paracrine fashion on the cancer cells to enhance their mo-
tility, invasion and metastasis. The enhanced metastatic ability was
reversible and dependent on CCLS signaling through the
chemokine receptor CCRS5 [271] (Table 4).

Likewise, bone marrow MSCs, stem cells derived from adipose
tissue are reported to exhibit tumor trophism.

In a model of breast cancer, ASCs localized in the tumor in
vivo, (not only when co-injected locally. but also when injected
intravenously). and were able to promote the development of broad
and fast tumors [273] and embodied in the tumor vessels to differ-
entiate into endothelial cells [274] (Table 4).

ASCs transplanted subcutancously or intracranially into
BALB/c nude mice, together with melanoma cells, increased tumor
dimension [275] and induced a greater number of living cells, thus
influencing apoptosis even when injected into an adjoining site
[269].

A low tumor latency and decreased apoptosis as well as modu-
lation of melanoma cell responses to cytotoxic drugs in vitro, were
also observed [276].

The CXCLI12/CXCR4 axis was shown to be involved in the
migratory interaction of tumor and mesenchymal cells, whereas it
was suggested that FGF-2 and VEGF were modulating molecules
favouring angiogenesis (Table 4) [273, 276. 277].

These results however should be considered with caution be-
cause it has been shown that in vivo MSCs do not proliferate when
implanted alone, but only when implanted with tumors

Other studies disagree with reported tumor-promoting proper-
ties (Table 4). When mixed with tumor cells, MSCs inhibited pri-
mary tumor growth and metastases formation in mice transplanted
with Lewis lung carcinoma or B16 melanoma. The tumor inhibition
was apparently due to soluble factor(s) released by marrow stromal
cells. In co-cultures with B16 melanoma cells, adherent bone mar-
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Table4. MSC Influence on /n vivo Tumors: Promotion and Inhibition of Tumor Growth
MSC Origin Tumor Delivery Evidences Suggested mechanisms References
h fetal and Colon cells s.c.co-injected T incidence 1 angiogenesis [270]
adult BM (SW480, F6) 1 proliferation
h BM Breast cells s.c.co-injected T dimension Secretion of CCLS [271]
(MCF/Ras, MDA-MB23 1, MDA- T metastasis chemokine
MB-435, HMLR)
h BM Colon cells Orthotopic co-injected T dimension T angiogenesis [272]
(KMI12SM) T metastasis 1 apoptosis
hand m AT Breast carcinoma cells i.v.co-injected or after T dimension Secretiono of 1273)
(4T| Y MDA-MB-231 24 hours SDFI/CXCR4
h AT Lung or glioma cells s.c. co-injected T dimension 1 apoptosis [275]
(H460, USTMG)
h AT Prostate cells s.c. injected in contro- T incidence T angiogenesis 1277]
(PC3) lateral side afier 7 days 1 dimension modulation of tumoral
CXCR4
h AT Melanoma (A475, M4Beu) and co-injected or 1 latency SDF1/CXCR4 [276
glioblastoma cells (SMGBA) iL.v.synchronus 1 dimension
h AT Prostate cells s.c. co-injected T dimension T angiogenesis [274]
differentiation into endothe-
lial cells
h BM Lewis lung carcinoma and mela- co-injected 1 dimension Anti-proliferative effect [278]
noma (B16) 1 metastasis
h BM Kaposi sarcoma Lv. injected 1 dimension 1 AKT signaling 1279]
h BM Non Hodgking lymphoma i.p. after 4 days 1 dimension Endothelial cell apoptosis 1280]
(SKW6.4, BJAB) 1 suivival observed in vitro
h BM Human myelogenous leukacmia grown isolation in vivo 1 proliferation Secretion of DKK-1 [281]
cells (K562)
h AT Pancreatic cancer cells i.L. 10000/mm3 of es- 1 dimension Cell cycle arrest in G1 [282]
tablished tumor phase
Abbreviations: AT, adipose tissue, BM, bone marrow; CCLS, chemokine ligand 5; CXCR4, chemokine receptor type 4; DKK-1, Dickkopf-related i 1: h, h ; LpJntra

peritoneuam it intra tumor; iv., intravenous, MSC, mesenchymal stem cells; m.murine; s.c., sub cutaneous, SDF1, stromal derived factor 1, VIIGT vascular cndolhclml growth

factor.

row cells exerted a significant anti-proliferative effect, which was
increased by the previous culture of the bone marrow cells with
granulocyte-macrophage colony-stimulating factor (Table 4) [278].

In an in vivo model of Kaposi's sarcoma, intravenously injected
MSCs homed to sites of tumorigenesis and potently inhibited tumor
growth and this inhibitory effect correlated with their ability to
inhibit target cell Akt, a protein-kinase playing a key role in various
cell activities (such as cell proliferation and migration. apoptosis
and transcription) (Table 4) [279].

In two in vivo models of disseminated non-Hodgkin's lympho-
mas, the intra-peritoneal injection of MSCs significantly increased
the overall survival, tumor masses developed more slowly and, at
histopathological observation, exhibited a massive stromal infiltra-
tion coupled with extensive intra-tumor necrosis [280].

MSCs also inhibited the proliferation of human myelogenous
leukemia cells, This effect was mediated by the secretion of Dick-

kopf-related protein-1 (DKK-1) (an inhibitor of B-catenine signal-
ing) under the regulation of Nanog stem cell transcription factor
(Table 4) [281].

In vivo, a single intra-tumoral injection of ASCs in a model of
pancreatic adenocarcinoma induced a strong and long-lasting inhi-
bition of tumor growth. These data indicate that ASCs strongly
inhibit pancreatic ductal adenocarcinoma proliferation, both in vitro
and in vivo and induce tumor cell death by altering cell cycle pro-
gression (Table 4) [282].

In general, studies have reported both growth promotion and
growth suppression for the same cell type including adult and fetal-
derived bone marrow, thus suggesting that the age of the donor
does not determine the effect of MSCs on tumor progression.

The reason for this discrepancy in unknown but it may be at-
tributable to the different tumor models, immunological characteris-
tics and angiogenic properties of the tumor, eterogeneity of ex vivo
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MSCs preparations, dose and timing of intra tumor administration,
animal models. and the origin of cancer cells.

The possibility that MSCs promote tumor growth and metasta-
sis raises concerns about the safety of their use as clinical tools.
However, no evidence of tumor formation has been reported in over
1000 patients so far treated with MSCs for a variety of indications.

In conclusion, understanding the subtle interactions between
MSCs and tumor cells is particularly critical given the therapeutic
potential of MSCs.

CLINICAL USE OF MSCS AND ASCS

Having migrated to inflammatory sites following a gradient of
inflammatory cytokines, MSCs modulate the local inflammatory
reaction by interacting with both adaptive and innate immunere-
sponses [156-162].

In addition. inside the damaged tissues, MSCs may promote the
survival of cells and the repair of tissues by recruiting and support-
ing local stem cells [19, 65-69, 283].

Therefore, cellular therapies utilizing ex vivo expanded MSCs
may be an interesting approach for inflammatory and autoimmune
discases, as supported by approximately 3500 trials on adult stem
cells, recorded on the “clinicaltrials.gov™ website up to April 15,
2011.

The following data on clinical studies were obtained by enter-
ing the search terms “adult mesenchymal stem cells™ and “adipose
stem cells”. Most of these studies are Phase | and Phase Il safety
trials still recruiting subjects and utilize both freshly isolated and ex
vivo-expanded cells.

1. Graft Versus Host Disease

Acute Graft Versus Host Disease (GVHD) is a severe compli-
cation of allogenic stem cell transplantation, associated with high
morbidity and mortality. particularly in subjects that do not respond
to corticosteroids, which are the first choice of drug for the initial
treatment of acute GVHD [284].

The treatment or prevention of acute GVHD during allogenic
hematopoietic stem-cell (HSC) transplantation is the main applica-
tion for MSCs and has aroused considerable interest [16, 19. 26,
reviewed by 285-287].

In a landmark case report. Le Blanc and co-workers first de-
scribed the successful use of MSCs for GVHD treatment [288].
This application, based on the immunomodulatory propertics of
MSCs. attracted wide interest and many studies have been pub-
lished, that, despite supporting the positive effect of the infusion of
MSCs on the course of GVHD, reported greatly variable rates of
responses [289-293]. The response seemed to be more effective in
children compared to adults [290, 293] and not influenced by the
presence of fetal calf serum [290] or platelet lysates [291, 292]
during in vitro expansion.

In 2008, the same group [290], studied 55 patients with acute
GVHD of gut and liver refractory to steroid therapy. The multicen-
ter phase Il experimental study found improved clinical outcome
after MSC administration in more than half of the patients and a
superior survival rate without significant adverse effects. No corre-
lation between response rate and donor histocompatibility leukocyte
antigen (HLA) match was observed.

In a phase Il study (Osiris Therapeutics) on 31 patients, the
infusion of non-HLA-matched MSCs added to steroids was well
tolerated and determined a 77% complete response after about one
month [294].

MSCs may also ameliorate not only liver and gastrointestinal
manifestations but also skin disease in refractory chronic GVHD
[295, 296].
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The reduction of acute GVHD was also described when culture-
expanded MSCs and HSCs were co-transplanted [297-299], but the
results should be interpreted with caution because of the small
number of subjects and lack of control cohorts.

However, the results of the different studies aiming at charac-
terizing the mechanisms of the clinical improvement are still con-
tradictory, thus suggesting the need for a better standardization of
timing. frequency and dose of transplanted mesenchymal cells. In
fact, in various murine models of lethal GVHD. developed follow-
ing haploidentical or mismatched hematopoietic graft, MSC or ASC
administration either eliminated the severity of reaction [300-302]
or (even if useful in prevention), failed to show any therapeutic
effect [303, 304].

In 2007. a phase Il randomized placebo-controlled trial in 78
patients receiving HSC transplantation and developing acute
GVHD resistant to corticosteroid therapy was performed [208].
Only 11 patients were enrolled before trial suspension due to the
observation of ancuploid karyotype of clones without transforma-
tion. One of these patients received MSCs with the altered karyo-
type. but no adverse events or potential late deleterious effects,
including neoplasia, were observed [208].

Further studies are in progress (http://www.clinicaltrials.gov,
inquire April 15, 2011): 15 clinical trials using BM-MSCs for the
treatment of acute or chronic GVHD have been registered (for a
total of 614 patients) (Table 5); one Phase L. two Phase 11 using
Prochymal® (expanded allogenic MSCs) and one Phase Il are
already completed and have enrolled more than 350 patients.

A few cases of severe and acute GVHD of gut and liver, which
oceurred in children and young adults, were successfully resolved
by the administration of ASCs [305-307]. Results are still prelimi-
nary and more data are needed to validate the effect of ASCs in
GVHD.

Currently only one multicenter, phase I-I1. clinical trial for the
evaluation of the infusion of allogenic ASCs for the treatment of
GVHD is in progress (30 subjects) (CMM/EICH/2008)
(http://www clinicaltrials.gov, inquire April 15,2011) (Table §).

2. Inflammatory Joint Diseases and Osteo-cartilagineous De-
fects

In vivo studies in animals showed that a single injection of
MSCs prevented cartilage loss and bone destruction in a mouse
model of collagen-induced arthritis [308], by down modulating T
lymphocyte response and TNF-ou inflammatory cytokines, while
others described non-beneficial effects [309].

In Rheumatoid Arthritis (RA) the inflammatory response driven
by T cells in the synovial membrane led to chronic joint destruc-
tion. In this disease the administration of MSCs indifferentiated or
differentiated to chondrocytes suppressed the proliferation and the
activation of T cells stimulated by collagen type I1[19, 310].

MSCs also modified the secretion of cytokines favouring 1L-10,
restoring IL-4 secretion and inhibiting the production of IFN-y and
TNF-o. pro-inflammatory factors [311]. Therefore, the anti-
inflammatory and immune-suppressive properties of MSCs indi-
cated a possible use for cartilage and bone repair therapy in RA
[reviewed by 73, 312-318].

Similar effects on T-cell proliferation and cytokine synthesis
and the production of inflammatory mediators by monocytes and
fibroblast-like synoviocytes have been also shown for ASCs [319].

The systemic injection of autologous and allogenic BM-MSCs
prevented RA, but did not have curative effects [315]. To date no
clinical trials based on MSC or ASC transplantation in RA have
been registered.

MSCs loaded in a 3-D scaffold. differentiated into chondrocytes
have been used for tissue engineering and applied for cartilage re-
pair in osteoarthritis (OA), a progressive disease of synovial joints
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Table5. Clinical Trials Using MSCs and ASCs Recorded on the “Clinicaltrials.Gov” Website up to April 15,2011
Study Phases
Clinical Use Cells Not
I-11 1 -1 111}
Known
Graft Versus Host BM-MSCs | | | B E = W & i 1 i Bl
Discase ASCs =
N BM-MSCs ] i i H E =8 ]
Osteoarthritis
ASCs
BM-MSCs [ = E g B
Crohn’s Disease
ASCs (=] ] i |
s | BM-MSCs L [ | ] EEEEEN
Liver Diseases
ASCs (=]
4 BM-MSCs & mE =EE = |
Diabetes
ASCs EE
_ BM-MSCs =) EEEEEE EEEEEEE
Heart Discases
ASCs | | | &
BM-MSCs m
Limb Ischemia
ASCs [ | | |
- BM-MSCs H EEEE EEEEEEN 2 EEE
Neurological Diseases
ASCs | G

ultimately resulting in the breakdown of osteocartilagineous tissue
and patient functional disability [317-320].

MSCs were also used directly for repairing OA cartilage in sifu,
in phase I-IT clinical trials [19]. but the direct delivery of MSCs has
carried out a few times [321]. MSC transplantation in the knee joint
of four OA patients, showed encouraging results [322], but suggest
that MSC-based procedures mainly rely on their trophic and immu-
nomodulatory effects that significantly influence the local environ-
ment and the regenerative potential of tissue resident progenitor
cells [reviewed by 312-318].

Eight clinical trials for testing the efficacy of BM-MSC implan-
tation in the treatment of OA have been registered and are currently
recruiting patients for an expected total of 268 (Table 5). No trial
appears to be registered for the wuse of ASCs
(http://www.clinicaltrials.gov, inquire April 15, 2011).

At present, our group is involved in a research project funded
by the European Community (Adipose-derived stromal cells for
osteoarthritis treatment — ADIPOA, Grant n. 241719) that foresees
an open multi dose phase 1 clinical trial for therapeutic applications
of ASCs in human OA and a phase I controlled study in OA com-
paring hyaluronan alone versus hyaluronan combined with ASCs.

MSC transplantation was also proposed for repairing cartilage
defects not related to osteoarthritic diseases, bone defects and non-
union [323], on the basis that specific host environment may induce
the differentiation of MSCs into chondrocytes or osteoblasts and the
secretion of cartilagineous matrix [73].

The osteoblastic potential of MSCs may be utilized for the
treatment of bone disecases such as osteogenesis imperfecta (OI)

[324], a genetic disorder of mesenchymal stem cells characterized
by defective type I collagen, osteopenia, bone fragility. severe bone
deformities, and growth retardation. Six children with OI type 111
were treated with two infusions of MSCs: five of six patients
showed engraftment in one or more sites, including bone, skin, and
marrow stroma and had an acceleration of growth velocity during
the first 6 months postinfusion [324]. At present two clinical trials
involving the use of BM-MSCs for the treatment of Ol have been
completed on 23 subjects (http:/www.clinicaltrials.gov. inquire
April 15,2011).

MSCs can be utilized also for repairing bone defects [325] or
for improving healing of bone non-unions (frequent complication of
long bone fractures) [326, 327]. In this situation, the injection of
concentrated bone marrow was effective and healing was related to
the number of MSCs in the product [327-329]. One trial using BM-
MSCs is in progress on six patients for the treatment of long bone
non unions (http://www.clinicaltrials.gov, inquire April 15, 2011).

Although MSCs from bone marrow efficiently contribute to
long bone reconstruction, their use for jaw reconstruction [330] did
not result in as many positive responses, because the implanted
stem cells from bone marrow failed to differentiate into osteoblasts
[331]. It was found that the embryonic origin of facial skeleton
from neural crest negatively influenced differentiation of mesoder-
mal origin stem cells, thus highlighting the importance of the origin
of MSCs used for tissue repair.

Autologous SVF cells combined with milled autologous bone

supported by fibrin glue were successfully utilized for treating a
calvarial fracture and bone continuity was restored within 3 months.
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In this case SVF was applied without manipulation but the ca-
pacity to produce angiogenic factors and promote neovasculariza-
tion was also displayed by ASCs [87, 125, 332, 333].

Autologous ex vivo-expanded ASCs combined with calcium
salts and bone mophogenetic protein has proven to be a very prom-
ising model for reconstruction of human maxillo-facial defects
[334, 335]. Cell-based procedures have great therapeutic potential
for other applications such as osteonecrosis, ligament, tendon and
meniscus lesions and inter-vertebral disc repair [reviewed by 155,
317].

3. Digestive Tract Diseases

Accumulated animal and human data support the therapeutic
potential of MSCs for diseases of the digestive tract. Crohn’s dis-
ease. perianal fistulas and liver failure are the main digestive tract
diseases for which cell-therapy is under evaluation [reviewed by
336).

The administration of autologous bone marrow-derived MSCs
appears to be safe and feasible in the treatment of refractory
Crohn's disease; no serious adverse events were detected during
bone marrow harvesting and administration [337]. An increased
therapeutic efficacy was observed when stem cells were first coated
with antibodies that specifically target them to inflamed sites [338].

A phase 11 trial with Prochymal® (expanded allogenic MSCs)
showed that all patients improved and 3 out of 9 reached clinical
remission [336]. Other studies were suspended because of a similar
response in the placebo group [339].

The use of ASCs in inflammatory bowel diseases (ulcerous
colitis and Crohn’s disease) is under study. In mice with induced
acute and chronic colitis and sepsis, the intraperitoneal injection of
human or murine ASCs reduced the severity of colitis (eliminating
inflammation, diarrhea and weight loss) and increased survival.
ASCs also protected from severe sepsis by reducing the infiltration
of inflammatory cells in various target organs and by downregulat-
ing the production of various inflammatory mediators [340].

Promising results were obtained from clinical trials for the
treatment of fistulizing Crohn’s disease with ASCs.

In 2002 the first intralesional inoculation of ASCs was de-
scribed for treating a recurrent and refractory recto-vaginal fistula.
Subsequently, numerous other studies have been published along
similar lines, which also compared the intra-lesional application of
SVF cells with expanded ASCs [341-344].

Recently, the treatment was also performed with expanded BM-
MSCs, which resulted in resolving the fistula and attenuating both
the Crohn’s and perianal discases [345].

At present, 5 trials (for a total of 621 patients) are registered for
the use of MSCs in the treatment of Crohn’s disease. of which two
are already completed: one phase 11 study on 10 patients and one
phase I1I on 200 patients aiming at the extended evaluation of Pro-
chymal® (Table 5). Six more trials, one Phase | study completed
(on 9 patients), three Phase I-11 and II and two unknown in progress
(for a total of 255 patients) are evaluating the use of ASCs for the
treatment of fistulas associated to Crohon’s Discase (Table 5)
(http://www.clinicaltrials.gov, inquire April 15, 2011).

The underlying mechanism of the therapeutic potential of
MSCs on hepatic cirrhosis, and the long-term destiny of the injected
MSCs are far from being clear [reviewed by 61, 336]. However,
preclinical studies have shown the differentiation of MSCs into
hepatocytes. in vivo, in different liver zones, depending on the site
of injection [346] and the production of molecules with anti-
fibrogenic activity that attenuate hepatic fibrosis [347, 348].

Significant clinical-pathological improvements have been
achieved after the application of BM-MSCs and ASCs by systemic
injection via the hepatic artery or the portal vein [336].

Mariani and Facchini

In four patients with decompensated liver cirrhosis, MSC trans-
plantation improved liver functions and increased liver volumes
after one year [349].

A randomized controlled trial in patients receiving autologous
BM-MSCs or placebo, showed a partial improvement of liver func-
tion in the first three months [350] and an improvement in the labo-
ratory scores of hepatic function was obtained in a phase I-1I study
that used autologous BM-MSCs differentiated to hepatocytes before
infusion [351]

Ten studies are currently evaluating the efficacy of MSC ad-
ministration on liver failure caused by hepatitis B virus and liver
cirrhosis in 838 patients. Two phase I-1I studies have been com-
pleted on 188 patients (Table 5). Two trials utilizing the infusion of
ASCs have been suspended (http://www.clinicaltrials.gov, inquire
April 15,2011).

Studies on diabetic murine models have shown that the intrave-
nous administration of BM-MSCs might localize to the pancreas |
336] and significantly reduce the level of glycemia [352]. Co-
transplantation of MSCs and bone marrow favored the regeneration
of insulin secreting B-cells and blocked the T-cell mediated disrup-
tion of the new cells in the pancreas of mice with type | diabetes
[353).

Co-transplantation of islets with MSCs had a profound impact
on the remodelling process, maintaining islet organisation and im-
proving islet revascularisation. MSCs also improved the ability of
islets to reverse hypergly caemia [354].

Human bone marrow multipotent stromal cell subsets activated
endogenous programs for islet regeneration after transplantation in
NOD/SCID mice, by stimulating the formation of small -cell clus-
ters associated with the ductal epithelium [355]. Transplanted
MSCs are thought to decrease glycemia through generating new f3-
cells. They can differentiate directly in vivo into new functional f3-
cells or induce the differentiation of endogenous pancreatic stem
cells into new [-cells in response to trophic cytokines [356]. In
addition, MSCs produce cytokines and growth factors which might
enhance islet survival and function after transplantation [357].

A safe and effective treatment of insulinopenic diabetics using
insulin-producing ASCs transfused with unfractionated cultured
bone marrow was reported. All patients were successfully infused
with bone marrow and ASC without any adverse effects and
showed 30-50% decreased insulin requirements with an increase in
serum c-peptide levels during a follow-up period of up to 23
months [358, 359].

At present eight studies utilizing MSCs are in progress: six on
224 patients with Type 1 Diabetes and two on 124 patients with
type 2 Diabetes (Table 5). Two more phase I-I1 studies are evaluat-
ing safety and efficacy of autologous ASC transplantation in 30
patients with Type 1 Diabetes and in 34 patients with Type 2 Dia-
betes (http:/www.clinicaltrials.gov, inquire April 15, 2011).

4. Cardiovascular Diseases

MSCs have produced functional advantages when used as a
therapeutic approach in ischemic heart diseases [reviewed by 360,
361]. They contributed to decreasing infarct dimension and myo-
cardial scars, restoring myocardial perfusion and improving ven-
tricular function [67] Furthermore, they were used with positive
results also in models of dilated cardiomyopathy and arhythmia
[362, 363].

Therapeutic effects of MSCs are based both on cell differentia-
tion in cardiac tissue [65, 66] and secretion of soluble factors with
trophic as well as anti inflammatory properties [364].

Several studies have suggested that MSC differentiation into
functional cardiomyocytes occurs rarely under physiological condi-
tions; however the observation of specific cardiac and myocyte
markers in the MSC-differentiated cells have suggested that this
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process occurs [365]. Subjects with acute myocardial infarction
treated with intra-coronary injection of autologous BM-MSCs,
showed an improvement of regional and global lefi-ventricular
function and improved heart function was also observed when
chronic ischemic cardiomiopathy was treated [366-368].

The combined treatment with autologous BM-MSCs and endo-
thelial progenitor cells showed a better perfusion and left ventricu-
lar function and scintigraphic imaging revealed the cell repopula-
tion/regeneration of infarct scar [363]. The efficacy was also found
for allogenic MSCs (Prochymal®) [369].

Fourteen clinical trials are currently ongoing on the use of
MSCs for cardiac cell therapy (818 patients) (Table 5). One Phase
I-11 study on 40 patients has been completed.

Three more phase | and I-11 studies evaluating ASC injections
in 99 patients are active (Table 5) (http://www.clinicaltrials.gov
inquire April 15,2011).

Peripheral atherosclerosis is the leading cause of limb ischemia
and several groups have initiated cell-based therapies for the treat-
ment of this discase [reviewed by 370].

Although the induction of angiogenesis, the increase of blood
flow and capillary thickness was repeatedly observed following
MSC transplants in animal models with limb ischemia, clinical data
showed that local autologous bone marrow stem cell transplantation
increased transcutaneous oxygen pressure and exercise tolerance
[371], even if a modest decrease in ischemic symptoms was pro-
duced [370].

Only one trial involves the use of MSCs for the treatment of
limb ischemia, but, at present, it is not recruiting patients (Table 5),
whereas three Phase I-11 studies using ASCs are in progress and
recruiting 132 patients (http://www.clinicaltrials.gov, inquire April
15,2011) (Table 5).

5. Neurological Diseases

The use of MSCs to treat neurodegenerative diseases, has
aroused great interest [reviewed by 372, 373]. MSCs have been
considered a promising therapeutic strategy for acute injury and
progressive degenerative diseases of the central nervous system,
such as spinal cord injury [374], stroke, Parkinson's Discase 1375].
amyotrophic lateral sclerosis [376]. and multiple system atrophy
(MSA) [377].

Regenerative approaches to neurological discascs using MSCs
include cell therapies where cells are delivered via intracercbral or
intrathecal injection. Following transplantation into the brain MSCs
regulate inflammation. decrease apoptosis, promote endogenous
neuronal growth and promote synaptic connections. Fifteen clinical
trials using MSC injections into the central nervous system of 382
patients to treat traumatic spinal cord injury, stroke. amyotrophic
lateral sclerosis, multiple sclerosis. MSA and Parkinson's Disease
are currently ongoing (Table 5). A Phase I-II study on 90 patients
with spinal cord injury treated with BM-MSCs has already been
completed, as well as a Phase | study on 8 patients treated with
ASCs. One more Phase I-1T study is currently recruiting 30 patients
with multiple sclerosis to be treated with ASCs (Table 5).

OPEN QUESTIONS AND FUTURE PERSPECTIVES

MSCs have been produced and used in many clinical applica-
tions and even if the results so far obtained have raised stimulating
hopes and indicated that mesenchymal stem cells are well tolerated
and do not induce severe adverse reactions after administration,
only long-term surveys will exclude potential late adverse reactions.

Despite the great interest in using MSCs, several potentially
critical problems have not been solved. The identification of spe-
cific markers, singularly able to identify the mesenchymal progeni-
tors. as well as definitive standards for their production are still
lacking. Supplements added to culture media and time of expansion
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also influence the quality and the safety of the cell product, what-
ever the cell source. Furthermore the ways MSCs mediate their
protective/reparative effects and modulate inflammatory responses
in vivo have not been fully defined.

In vitro and in vivo findings support the hypothesis that the
differentiation options of MSCs are flexible, since apparently “ter-
minally” differentiated mesenchymal cells can re-gain stem cell
properties and subsequently shift their differentiation status, due to
modified external conditions [41, 57, 59, 378-382].

Consistent with mesenchyme plasticity [383], besides the multi-
lineage differentiation properties [21, 71-73], human MSCs can
simultaneously express osteogenic and adipogenic markers [384]
and homogeneous populations derived from single cloned cells can
sequentially switch from the adipocytic to the osteoblastic lineage
in vitro [385]. thus suggesting that these cells can express hybrid
characteristics of both adipocytes and osteoblasts [380, 384, 386].
Currently there is an ongoing debate on the fundamental dynamics
underlying this kind of cell plasticity.

The MSC system may exhibit a pronounced flexibility in order
to be capable of instantaneous fate decisions in the course of devel-
opment and in case of injury.

This differentiation flexibility raises important therapeutic con-
siderations. In fact, the lack of an early commitment to a defined
lineage differentiation, allows these cells to transdifferentiate in
vivo, following their therapeutic administration. Depending on the
environment that these cells find in a particular tissue, their final
fate can be influenced, but can also probably be induced to a spe-
cific drift when required by preventive or interventional therapies.

In addition, historical histological observations have shown that
adipocyte number increases with advancing age. concomitantly
with a decreased bone formation [387-389]. In agreement. recent
studies have shown an age-related decrease in the number of MSCs
[242, 245, 390-392] and osteogenic properties of isolated human
MSCs cultured in three dimension conditions [393. 394].

These data suggest that in addition to local or systemic factors,
also intrinsic modifications of the cells with ageing can influence
their differentiation pathway.

The process of ageing is important from the perspective of tis-
sue regeneration and repair because there is evidence that beneficial
functions may be negatively influenced by age.

The complexity of cell therapy needs more convincing controls
and more accurate methods, than the simple standard ones so far
described. to assess safety, reproducibility and quality of in vitro-
expanded and in vivo-infused cells.

Due to the impossibility of real-time tracking in vivo in patients
receiving MSCs, the optimal timing, dose and schedule of MSC
administration have not been completely defined, and it has not
been clarified whether the therapeutic effects of MSCs can be up or
down modulated by the co-administration of immunosuppressive
treatments.

The anti-inflammatory properties of MSCs might be a new
therapeutic tool for decreasing inflammatory response in chronic
and autoimmune diseases during activity phases of the disease.
Finally. the possibility of putting MSCs together with bioactive
substrates as well as using MSCs for gene delivering are further
important potential clinical applications.
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ADAS
ADIPOA

AdMSCs
ADSCs
ALCAM

APC
ASCs
AT
MSCs
BM
BMPs
BMSSC
BSE
CALLA

CCL
CTL
CXCR
DCs
DKK
EGF
EMEA
FBS
FGF
GD
GLP
GMP
GVHD
h

HGF
HLA-DR
HS
HSCs
hTERT
i.p.

it

i.v.
IDO
IFATS

IFN
IGF
IL
iNOS

Adipose-derived adult stem cells

Adipose derived stromal cells for os-
teoarthritis treatment

Adipose mesenchymal stem cells
Adipose-derived stromal cells

Activated lymphocyte cell adhesion mole-
cule

Antigen presenting cell

Adipose derived stem cells/stromal cells
Adipose tissue

Mesenchymal Stem Cells

Bone marrow

Bone morphogenetic proteins

Bone marrow stromal stem cells
Bovine spongiform encephalopaty
Common acute lymphocytic leukemia
antigen

Chemokine ligand

Cytotoxic T lymphocytes
Chemokine receptor

Dendritic cells

Dickkopf-related protein
Endothelial growth factor
European Medicine Agency

Fetal bovine serum

Fibroblast growth factor
Ganglioside

Good laboratory practices

Good manufacturing practices
Graft Versus Host Disease

Human

Hepatocyte growth factor

Human leukocyte antigen-DR
Human serum

Hematopoietic stem cells

Human telomerase reverse transcriptase
Intra peritoncum

Intra tumor

Intravenous

Indoleamine 2,3-dioxygenase
International Federation of Adipose
Therapeutics and Science
Interferon

Insulin growth factor

Interleukin

Inducible nitric-oxide synthase
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ISCT = International Society for Cellular Therapy
LNGFR = Low affinity receptor of neural growth
factor
m = Murine
MACs = Mesenchymal adult stem cells
MADS = Multipotent adipose-derived stem cells
M-CSF Macrophage-colony stimulating factor
Mel-CAM Melanoma-cell adhesion molecule
MHC-I = Major Histocompatibility Complex Class |
MHC-11 = Major Histocompatibility Complex Class
11
MIAMI = Marrow-isolated adult multipotent induc-
ible cells
MSA = Multiple system atrophy
MSCs = Mesenchymal stem cells/marrow stromal
cells
MSI = Microsatellite instability
NGFR = Neural growth factor receptor
NK = Natural Killer
NO = Nitric oxide
OA = Osteoarthritis
0l = Osteogenesis imperfecta
PDGF = Platelet derived growth factor
PDGF-R = Platelet-derived growth factor receptor
PECAM = Platelet endothelial cell adhesion molecule
PGE Prostaglandin E
PLA = Processed lipoaspirate cells
RA = Rheumatoid Arthritis
s.C. = Sub cutaneous
SDF = Stromal derived factor
SSEA = Stage-specific embryonic antigen
SVF = Stromal vascular fraction
T regs = regulatory T cells
TGF = Transforming growth factor
Th = T helper
TNF = Tumor necrosis factor
VCAM Vascular cell adhesion molecule
VEGF = Vascular endothelial growth factor
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